September 19, 1999 Mitko Hristov Kunchev BABA TONKA High School of Mathematics 18 Ivan Vazov St. ROUSSE 7000, BULGARIA <u>direktor@mg-babatonka.bg</u>

BRUCE SHAWYER Department of Mathematics and Statistics Memorial University of Newfoundland St. John's, Newfoundland CANADA. A1C 5S7

Problem 2447. Two circles intersect at *P* and *Q*. A variable line through *P* meets the circles again at *A* and *B*. Find the locus of the orthocentre of triangle *ABQ*.

Solution. Let the circles be $K_1(O_1; R_1)$ and $K_2(O_2; R_2)$. We denote by AA_1, BB_1, QQ_1 the altitudes of the triangle ABQ, and by H – its orthocentre. Let $AH \ I \ K_1 = D$ and $BH \ I \ K_2 = C$ (Figure 1). Let $\angle BAQ = \alpha$ and $\angle ABQ = \beta$. It is clear that α and β are constant – they don't depend on the position of line AB. We denote by φ the angle between K_1 and K_2 . It's clear that $\varphi = \alpha + \beta$.

We split the problem into three cases.

Case I. Let $\varphi = \alpha + \beta = 90^{\circ}$. Now $\triangle ABQ$ is a right triangle and Q is its orthocentre. Hence the locus contains only one point -Q. We have this case when the angle between the two given circles is 90° .

Case II. Let $0^0 < \varphi = \alpha + \beta < 90^0$. Then $\angle BAQ$ and $\angle ABQ$ are acute angles and $\angle AOB$ is obtuse angle.

Case II. 1. Let $\angle PAQ = \alpha$, i. e. the point A lies on the bigger arc PQ and $A \neq P$, $A \neq Q$ (Figure 1).

Triangle ABA_1 is a right triangle, so $\angle BAA_1 = 90^\circ - \beta$. The angle BAA_1 is an inscribed angle in K_1 , then $\stackrel{\frown}{PD} = 2.\angle BAA_1 = 2.(90^\circ - \beta) \rightarrow \text{constant}$.

Hence *D* doesn't depend on the line *AB*, i. e. the altitude *AA*₁ goes always trough the fixed point *D*. Analogously in triangle $ABB_1 \angle ABB_1 = 90^\circ - \alpha$. It is inscribed angle in

 K_2 , so $PC = 2 \angle ABB_1 = 2.(90^0 - \alpha) \rightarrow \text{constant}$. Hence *C* doesn't depend on the line *AB*, i. e. the altitude *BB*₁ goes always trough the fixed point *C*. (The third altitude *QQ*₁ goes always trough the fixed point *Q*, i. e. the three altitudes of the triangle *ABQ* go trough three fixed points)

We'll prove that $O_1 \in QC$.

 ΔPQO_1 is an isosceles triangle $(O_1P = O_1Q = R_1)$ and $\angle PO_1Q = PQ = 2.\alpha$, then

$$\angle PQO_1 = \frac{1}{2} \cdot (180^\circ - 2\alpha) = 90^\circ - \alpha.$$

Quadrilateral PBCQ is inscribed in K_2 , hence

 $\angle PQC = 180^{\circ} - \angle PBC = 180^{\circ} - (90^{\circ} - \alpha) = 90^{\circ} + \alpha;$

 $\angle PQO_1 + \angle PQC = 90^0 - \alpha + 90^0 + \alpha = 180^0.$

Thus $O_1 \in QC$. Analogously $O_2 \in DQ$. This is very important! We discovered that $C = O_1QI \ K_2$ and $D = O_2QI \ K_2$!

Quadrilateral *APQD* is inscribed in K_1 , so $\angle APQ + \angle ADQ = 180^\circ$, but $\angle ADQ + \angle QDH = 180^\circ$, then $\angle APQ = \angle QDH$.

Quadrilateral *BCQP* is inscribed in K_2 , so $\angle BCQ + \angle BPQ = 180^\circ$, but $\angle BCQ + \angle QCH = 180^\circ$, then $\angle BPQ = \angle QCH$.

Since $\angle APQ + \angle BPQ = 180^{\circ}$ it follows that $\angle QDH + \angle QCH = 180^{\circ}$. Hence the points *D*, *Q*, *C*, *H* are concyclic, i. e. the point *H* lies always on the circumscribed circle of ΔDQC (It doesn't depend on the position of line *AB*).

Case II. 2. Let $\angle PAQ = 180^{\circ} - \alpha$, i. e. the point A lies on the smaller arc PQ and $A \neq P$, $A \neq Q$ (Figure 2).

Triangle ABB_1 is a right triangle, so

 $\angle ABB_1 = 90^\circ - \alpha$ and $\angle PBC = 180^\circ - \angle ABB_1 = 90^\circ + \alpha$; $PC^* = 2(90^\circ + \alpha)$. Triangle BAA_1 is a right triangle, so

 $\angle BAA_1 = 90^0 - \beta$ and $\angle PAD = 180^0 - \angle BAA_1 = 90^0 + \beta$; $PD^* = 2(90^0 + \beta)$. Hence the points *D* and *C* don't depend on the line *AB*. We point that:

$$PC^{*} + PC = 2(90^{\circ} + \alpha + 90^{\circ} - \alpha) = 360^{\circ},$$

$$PD^{*} + PD = 2(90^{\circ} + \beta + 90^{\circ} - \beta) = 360^{\circ}.$$

Hence the points *D* and *C* from II. 1. and II. 2. are identical!

Again we'll prove that the points D, Q, C, H are concyclic.

 $\angle DQC = \angle O_1 QO_2 = \angle O_1 QP + \angle O_2 QP = 90^0 - \alpha + 90^0 - \beta = 180^0 - \alpha - \beta.$ (1)

 ΔHQ_1B is a right triangle, so $\angle Q_1BH = \angle ABB_1 = 90^0 - \alpha \Longrightarrow \angle Q_1HB = \alpha$.

 ΔHQ_1A is also a right triangle, so $\angle Q_1AH = \angle BAA_1 = 90^0 - \beta \Longrightarrow \angle Q_1HA = \beta$. We get:

 $\angle AHC = \angle Q_1HA + \angle Q_1HB = \alpha + \beta \Rightarrow \angle DHC = 180^0 - \angle AHC = 180^0 - \alpha - \beta$. (2) From (1) and (2) immediately follows that $\angle DQC = \angle DHC$. Hence the points *D*, *Q*, *C*, *H* are concyclic, i. e. the point *H* lies always on the circumscribed circle of $\triangle DQC$ (It doesn't depend on the line *AB*).

Case II. 3. If $A \equiv P$ or $A \equiv Q$ hence $\triangle ABQ$ doesn't exist.

We conclude that the orthocentre of the triangle ABQ always lies on the circumscribed circle of the triangle DQC.

Let *H* is an arbitrary point on the circumscribed circle of the triangle *DQC*, *DH* I $K_1 = A$ and *CH* I $K_2 = B$. We'll prove that $P \in AB$.

The points D, Q, C, H are concyclic, so $\angle QDH + \angle QCH = 180^{\circ}$. (3)

The points A, P, Q, D are concyclic, so $\angle ADQ = 180^{\circ} - \angle APQ$, but $\angle ADQ = 180^{\circ} - \angle QDH$, then $\angle APQ = \angle QDH$. (4)

The points *P*, *B*, *C*, *Q*, are concyclic, so $\angle BCQ = 180^{\circ} - \angle BPQ$, but $\angle BCQ = 180^{\circ} - \angle QCH$, then $\angle BPQ = \angle QCH$. (5) From (3), (4) and (5) it follows that $\angle APQ + \angle BPQ = 180^{\circ} \Rightarrow P \in AB$.

We proved that the locus of the orthocentre of triangle ABQ is the circumscribed circle of the triangle DQC, without the point Q, where Q is a given point, $D = O_2QI K_1$ and $C = O_1QI K_2$.

Case III. Let $90^{\circ} < \varphi = \alpha + \beta < 180^{\circ}$. This case is the same as Case II.